State of North Carolina Legislative Research Commission Advisory Subcommittee on Offshore Energy Exploration

Andy Radford American Petroleum Institute

April 15, 2009

Why we need additional sources of oil and natural gas

Where might we find additional reserves?

Technological Advances

- Equipment Materials
 - Ability to withstand higher temperatures and pressures
- Computing Power
 - Rapid detection and reaction
- Waste Management Practices
 - Produced Water discharge oil and grease limits
 - Drilling and other fluid discharge limits
- Shallow Hazard Identification

Shallow Hazards Surveys

State-of-the-art technology is used to determine the best surface locations to drill

Environmental Performance

- Enviable Record of Environmental Performance
- Continuous improvements in safety and environmentally sensitive operations
- MMS conducts 12,000 inspections annually
- 2005/2008 hurricanes demonstrate resilience

Offshore Project Timeline

Gulf of Mexico Deepwater Frontier Exploration and Production Timeline Individual Prospect: 5,000' Water Depth, 30,000' Drilling Depth

Seismic Imaging

Effective Drilling and Completions

Drilling and Completions Technology

Integrated technology solution

- Seismic imaging
- Reservoir modeling
- Rock mechanics
- Drilling operations
- Real-time monitoring

(Live video camera and feed from rig)

BP Alaska – Liberty Project Extended Reach Drilling

Shell Perdido

Subsea Layout under the Spar

- Deepest drilling & production facility at 7817 ft (2382m)
- Deepest subsea well at Tobago 9627 ft (2934m)
- Remote location in western GOM; 200 miles south of Freeport; 60 miles from nearest infrastructure
- High risk oil reservoirs: 1st Paleogene (Lower Tertiary) production in GOM, large well count
- Extreme weather: designed to withstand CAT-5 (1000yr) hurricanes
- New technologies had to be developed to enable the project

Petrobras - GOM - Cascade/Chinook

FPSO Technology

- Good for remote fields with little infrastructure
- Minimal seafloor disturbance
- Eliminate need for pipeline
- Can disconnect for severe weather
- FDPSO Faster field development

Subsea Processing Advances

- Multiphase pumping
- Subsea separation
- Longer tie backs
- In some cases production directly to shore – no platform needed

INITIAL ORMEN LANGE FIELD LAYOUT

Fig.

Other Future Technological Advances

- Materials
 - lighter, stronger drill pipe to allow for greater distance extended reach drilling
- Advances in computing technology
 - linking seismic data to other subsurface measurements
 - increases the accuracy and resolution of subsurface images
- Nanotechnology
 - enhanced recovery could boost the average global recovery factor of oil and gas by 10 percentage points

Thank You

Questions?

Andy Radford radforda@api.org